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Organic–inorganic  hybrid  perovskite  materials  demon-
strate promising applications in high-efficiency perovskite sol-
ar  cells  (PSCs)  with  a  certified  power  conversion  efficiency
(PCE)  of  25.5%  (https://www.nrel.gov/pv/cell-efficiency.html).
However,  intrinsically  volatile  and  thermally  unstable  nature
of the organic cations result in poor thermal stability of organ-
ic–inorganic hybrid perovskite materials, hampering the com-
mercialization of organic-inorganic hybrid PSCs[1]. All-inorgan-
ic CsPbI3–xBrx (x = 0–3) perovskites have been attracting great
attention in recent years because of their higher thermal stabil-
ity[2].  Among  the  reported  CsPbI3–xBrx perovskites,  CsPbI2Br
bears  a  reasonable  balance  between  bandgap  and  phase
stability,  thus  becomes  the  most  extensively  studied
material[3−15]. Though there are many works aiming at achiev-
ing high-efficiency  CsPbI2Br  PSCs,  improving the  photostabil-
ity  of  CsPbI2Br  PSCs  is  another  key  for  commercialization  of
all-inorganic  PSCs.  Intriguingly,  it  has  been  reported  that
CsPbI2Br  is  susceptible  to  make light-induced phase segrega-
tion, i.e.  severe segregation of CsPbI2Br to low-bandgap I-rich
and  wide-bandgap  Br-rich  domains via ion  diffusion,  leading
to  obvious  current–voltage  hysteresis  and  decrease  of  stabil-
ized power output (SPO)[16−20]. Such a light-induced phase se-
gregation  can  be  suppressed  by  optimizing  the  interface
between  perovskite  layer  and  charge-transport  layer[18, 19].
For  example,  Tian et  al.  improved  the  photostability  of
CsPbI2Br PSCs through modifying SnO2 electron-transport lay-
er  by PN4N and incorporating dopant-free PDCBT hole-trans-
port  layer[18].  Xiao et  al. developed  a  new  dopant-free  hole-
transport  layer  PSQ2  to  substitute  Spiro-OMeTAD,  and  found
that  PSQ2-based  devices  had  less  SPO  loss[19].  Despite  of  the
effectiveness  of  suppressing  light-induced  phase  segrega-
tion via such  interfacial  modification,  whether  the  phase  se-
gregation is induced merely by light illumination or already ex-
ists  in  the  crystallization  of  CsPbI2Br  remains  unclear  yet.  An-
other open question is whether the photostability of CsPbI2Br
can be improved by eliminating light-induced phase segrega-

tion  of  CsPbI2Br  via  modulating  the  crystallization  process  of
CsPbI2Br.

Here,  we  introduced  poly(methyl  methacrylate)  (PMMA)
additive  into CsPbI2Br  to  modulate  the crystallization process
of  perovskite  films.  We  found  that  phase  segregation  occurs
during crystallization of CsPbI2Br especially under fast crystalliz-
ation  rate  and  low  annealing  temperature,  and  this  intrinsic
phase  segregation  exacerbates  light-induced  phase  segrega-
tion.  With  PMMA  additive,  CsPbI2Br  solar  cells  gave  an  en-
hanced PCE of 15.88%, and the photostability was improved.

We  added  PMMA via anti-solvent  dripping  (Fig.  S1)[21].
The  CsPbI2Br  film  with  PMMA  exhibited  slow  color  change
from  transparent  to  brown-yellow  during  annealing  (Fig.  S2),
indicating that PMMA incorporation leads to slower crystalliza-
tion  of  CsPbI2Br  and  larger  grain  with  reduced  root-mean-
square  (RMS)  roughness.  (Fig.  1(a),  Figs.  S3  and S4).  The  crys-
tallinity  and  crystalline  orientation  of  CsPbI2Br  film  were  also
optimized.  XRD  shows  that  CsPbI2Br  film  with  0.05  mg/mL
PMMA  has  strongest  (100)  and  (200)  diffraction  peaks
(Fig.  S5).  The GIXRD patterns reveal  the improved orientation
of  CsPbI2Br  crystal  with  (100)  and  (200)  planes  parallel  to
the  substrate  (Figs.  S6  and  S7).  PMMA  incorporation  im-
proves  the  crystalline  orientation  of  CsPbI2Br  along  plane
(100) (Fig. 1(b)).

We studied the trap-state density (nt) of CsPbI2Br layer by
using  space  charge  limited  current  (SCLC)  method  based  on
an electron-only device with a structure of ITO/SnO2/ZnO/per-
ovskite/PCBM/Ag  (Fig.  1(c))[22]. nt can  be  calculated  by  equa-
tion: 

nt =
εε
eL

× VTFL,

where ε0 is  the  vacuum  permittivity, ε is  the  relative  dielec-
tric constant of CsPbI2Br[13], e is the elementary charge, and L
is the thickness of perovskite film. The trap-filled limit voltage
(VTFL)  is  the  bias  voltage  at  the  kink  point.  The nt decreased
from  1.09  ×  1016 to  8.18  ×  1015 cm−3 after  PMMA  incorpora-
tion.  Low  trap  density  favors  to  reduce  charge  recombina-
tion.  The  carrier  lifetimes  (τ)  of  CsPbI2Br  films  measured  by
time-resolved  photoluminescence  (TRPL)  were  6.68  and
10.34 ns for the control film and the film with PMMA, respect-
ively (Fig.  S8,  Table S1)[23].  The prolonged carrier lifetime sug-

  
Yanbo Shang and Zhimin Fang contributed equally to this work.
Correspondence to: L M Ding, ding@nanoctr.cn; S F Yang,

sfyang@ustc.edu.cn
Received 24 FEBRUARY 2021.

©2021 Chinese Institute of Electronics

SHORT COMMUNICATION

Journal of Semiconductors
(2021) 42, 050501

doi: 10.1088/1674-4926/42/5/050501

 

 
 

http://dx.doi.org/10.1088/1674-4926/42/5/050501
https://www.nrel.gov/pv/cell-efficiency.html
https://www.nrel.gov/pv/cell-efficiency.html
mailto:ding@nanoctr.cn
mailto:sfyang@ustc.edu.cn


gests that PMMA can passivate trap states. The higher intens-
ity  of  the  PL  peak  for  CsPbI2Br  film  (Fig.  S9),  smaller  ideal
factor  (ε)  obtained  from Voc vs  light  intensity  plots  (Fig.  S10),
and  decreased Rct (charge  transfer  resistance)  obtained  from
EIS (Fig. S11 and Table S2) all  suggest suppressed non-radiat-
ive decay in CsPbI2Br film with PMMA.

PSCs  with  a  structure  of  ITO/SnO2/ZnO/CsPbI2Br/Spiro-
OMeTAD/MoO3/Ag  were  made.  The  photovoltaic  perform-
ances  for  the  devices  with  and  without  PMMA  were  com-
pared  (Fig.  S12,  Fig.  S13  and  Table  S3).  The  PCE  increased
from 14.42% to  15.88% after  adding 0.05  mg/mL PMMA.  The
negligible  change  of Jsc is  verified  by  external  quantum  effi-

ciency (EQE)  measurements  (Fig.  S14).  The PCE enhancement
for  the  device  with  PMMA  results  from  the  increases  of Voc

(1.124 to 1.216 V) and FF (67.77% to 75.28%), which can be at-
tributed to decreased trap states in CsPbI2Br film with PMMA.
The devices with PMMA have smaller hysteresis index (Fig. S15
and  Table  S4)  and  less  degradation  of  SPO  (Fig.  1(d) and
Fig. S16(a))[18, 19]. The existence of hysteresis and SPO degrada-
tion  suggest  the  occurrence  of  light-induced  phase  segrega-
tion of CsPbI2Br[19, 20]. The smaller hysteresis and SPO degrada-
tion suggest that PMMA can suppress light-induced phase se-
gregation of CsPbI2Br.

Without  PMMA,  the  phase  segregation  of  CsPbI2Br  takes
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Fig. 1. (Color online) (a) Cross-section SEM image for CsPbI2Br solar cell. (b) Schematic illustration of perovskite crystal with and without PMMA.
(c) Dark current–voltage curves for the electron-only devices with and without PMMA. (d) Stabilized power output (SPO) of CsPbI2Br device with
PMMA.  (e)  Steady-state  PL  spectra  for  CsPbI2Br  films  from  different  fabrication  process  (annealed  at  100  °C).  (f)  Steady-state  PL  spectra  for
CsPbI2Br films with PMMA before and after illumination.
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place during the formation of  CsPbI2Br film,  and we call  it  in-
trinsic phase segregation. On the one hand, intrinsic phase se-
gregation  occurs  more  easily  at  low  annealing  temperature.
The  best  devices  we  discussed  above  were  all  made  at
240  °C.  However,  CsPbI2Br  PSCs  made  under  100  °C  exhibit
more serious degradation of SPO (Fig.  S16(b))  and larger hys-
teresis index (Table S4), indicating more severe phase segrega-
tion.  Low  annealing  temperature  does  not  favor  the  growth
of  homogeneous  inorganic  perovskite  films,  which  are  com-
monly made at high temperature. But, with PMMA incorpora-
tion,  hysteresis  and  SPO  degradation  (Fig.  S16(c))  were  sup-
pressed  effectively  even  at  low  temperature.  On  the  other
hand,  insufficient  components  diffusion  could  occur  at  fast
crystallization rate, which results in phase segregation eventu-
ally.  Usually,  perovskite  precursors  with  DMF  solvent  exhibit
fast crystallization rate, while DMSO could slow down the crys-
tallization[24].  When using DMF/DMSO mixed solvent, PL peak
split  indicates  that  phase  segregation  becomes  less  obvious.
PMMA retards the crystallization (Fig. S2), leading to single PL
peak,  suggesting  the  elimination  of  intrinsic  phase  segrega-
tion (Fig. 1(e)).

Light-induced phase segregation is  caused by ion migra-
tion,  and  the  smaller  Br– ions  are  easier  to  migrate  than  I–.
With higher Br content, the phase segregation takes place eas-
ily[25].  Intrinsic  phase  segregation  generates  I-rich  phase  and
Br-rich  phase,  and  this  uneven  composition  will  exacerbate
phase  segregation.  According  to  SEM  images  (BSE  mode)
(Fig. S17), more uniform grain color reveals suppressed phase
segregation.  After  45  min  illumination,  no  PL  peak  split  and
GIXRD  (200)  diffraction  peak  were  observed  for  CsPbI2Br  film
with  PMMA  (Fig.  1(f),  Fig.  S18  and  Fig.  S19)[9],  indicating  that
light-induced  phase  segregation  was  suppressed  by  PMMA.
We further evaluated the photostability of CsPbI2Br devices un-
der continuous illumination (unencapsulated in N2 glovebox).
A  ~36%  PCE  drop  was  observed  for  the  control  device  after
400  h  operation,  while  for  PMMA-containing  device,  the  PCE
droped  by  ~17%  (Fig.  S20(b)).  The  improved  photostability

was due to the elimination of phase segregation.
We propose a mechanism for the elimination of phase se-

gregation in CsPbI2Br film by using PMMA (Fig. 2). The coordin-
ation interactions between C=O groups in PMMA and Pb2+ in
CsPbI2Br  (Fig.  S21  and  Fig.  S22)  lead  to  lowered  crystalliza-
tion rate,  making uniform distribution of  I– and Br– anions[21].
The  intrinsic  phase  segregation  is  eliminated  at  low  anneal-
ing temperature and this prohibition effect is expected to ex-
ist  under  light  illumination  as  well,  resulting  in  suppressed
J–V hysteresis  and  eliminated  light-induced  phase  segrega-
tion.

In summary, PMMA was added into CsPbI2Br layer to mod-
ulate  the crystallization and eliminate  the phase segregation.
PMMA  can  also  passivate  the  trap  states.  The  CsPbI2Br  solar
cells  delivered  an  enhanced  PCE  of  15.88%  and  an  improved
photostability.
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